

Moving Target Defense for Space Systems

SNL: Chris Jenkins, Eric Vugrin, Indu Manickum, Sarah Krakowiak, Richard "Grant" Brown, Jacob Hazelbaker, Nicholas Troutman, Josh Maxwell

Purdue: Prof. Bharat Bhargava, Marina Haliem, Ganapathy Mani

DEFCON 31 Aerospace Village

August 11, 2023

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2023-05208C

2 Agenda

Intro

- BLUF
- Why is this work being done?

Background

- Moving target defense
- MIL-STD-1553

MTD Algorithm

- State Generation
- Usage
- Randomness Characterization
- Unpredictability Quantification

Experimentation

- Setup
- Results

Machine Learning Attacks (done by Purdue)

- Methodology
- Results

Q&A

Background

Name: Chris Jenkins Title: R&D S&E Cybersecurity Degrees:

- B.S. Computer Engineering
- M.S. Computer Engineering
- PhD, Electrical Engineering (Computer Architecture, Minor: Computer Science)

How I got to SNL: Peoria \rightarrow UIUC \rightarrow UW Madison \rightarrow Taiwan \rightarrow San Diego \rightarrow UW Madison \rightarrow ABQ

First role at Sandia: EC-LDRD

- 1st patent
- 1st conference
- 1st publication

Now: Focus on HPC, OT, cybersecurity consultant for SMB through the SMPP & NMSBA

Latin Dance				
	Salsa			
	Bachata			
	Merengue			
	Cumbia			
RV Trip	RV Trips			
	Started in 2020			
	Every year since then			
Volunteer for STEM programs				
	HMTech			
	Dreamcatchers			
	UNM			

Sandia's Impact

Sandia is often called upon to respond to high-profile events

Mars Perseverance rover

NASA's Perseverance rover landed safely on Mars after a seven-month journey through space. The event could only take place following a safe launch that had been vetted by Sandia scientists. (Courtesy of NASA/JPL-Caltech)

Cleanroom invented 1963

As the birthplace of the modern cleanroom, Sandia helped revolutionize manufacturing in electronics and pharmaceuticals and advance space exploration. \$50 billion worth of cleanrooms built worldwide.

COVID-19 Pandemic

Sandia has more than 50 COVID-related science and engineering projects that are designed to help the nation during the pandemic.

(Image by Loren Stacks)

Sustainable Energy

Sandia seeks to support the creation of a secure energy future for the US by using its capabilities to enable an uninterrupted and enduring supply of energy from domestic sources, and to assure the reliability and resiliency of the associated energy infrastructure.

U.S. National Laboratories

Sandia Has Two Main Locations

Intro

⁸ Cyber Security vs. Cyber Resilience

Concern: High consequence systems are becoming an attractive target for threat actors

10 BLUF

Accomplishments

Patent awarded for MTD algorithm

- Obtained GUN copyright for MTD algorithm software (dll)
- **NDA** with commercial company

Submitted to R&D100

Key Results

- Reduced adversarial knowledge by 97% during exfiltration cyber resilience experiment
- Quantified randomness and unpredictability of MTD algorithm
- Demonstrate resilience against machine learning attacks
- Generalized approach can be applied to various applications (not just address applications)

Publications

□2021 IEEE Space Computing Conference (SCC)

- Sandia's FY21 Laboratory Directed Research & Development Annual Report (Page 39, <u>https://user-cd6tqbe.cld.bz/Sandia-Labs-FY21-LDRD-Annual-Report</u>)
- 2023 IEEE Transactions on Dependable and Secure Computing (TDSC)

Presentations

- 2019 & 2022 Purdue CERIAS Seminar
- 2021 SNL Malware Technical Exchange Meeting (MTEM)
- 2022 Ground Systems Architecture Workshop (GSAW)

Background

12 Moving Target Defense

- •Dynamic reconfiguration of environment
- •Randomly change node address after n messages
- •Mitigates risk of an attacker guessing the correct addresses and injecting data

Hypothesis: MTD increases cyber resilience

¹³ MIL-STD-1553 Bus Architecture

14 Typical BC-RT Message

Hypothesis: integration of MTD with a real-time protocol can increase cyber resilience of platforms using the protocol

Key Research Questions:

- 1. Can MTD be implemented in a manner that maintains operational constraints (e.g., accuracy, latency)?
- 2. Can we provide quantitative evidence that MTD does indeed improve cyber resilience?

Uniqueness: Real-time, SWaP constrained systems Uniqueness: Doesn't require anomaly detection

MTD Algorithm

Design Challenges

Keep underlying protocol – determinism, predictability, reliability, and real-time operation

Dynamic address generation – each node must index or use a disjoint set of addresses as compared to other nodes on the network. Also, have the ability to increase or decrease speed of address hopping

Synchronization – provide fast recovery if a device loses sync

Entropy – provide enough randomness

Periodicity – provide sufficiently long hopping patterns

Authenticity – determine if MTD commands are authentic using analog signatures, MACs, MICs, etc.

18 MTD Algorithm

¹⁹ State Matrix (Arrays) – Static Offset

²⁰ State Matrix (Arrays) – Current Offset

21 Entropy Results

Preliminary findings

- Frequency of addresses is not perfectly uniform, leaving some area for improvement
- Entropy for 256 columns is 0.9984
- Entropy for 65536 columns is 0.9989

Analysis Process

- 1. Create 10 state matrices with 10 PRNG seeds
- 2. For each matrix, 31 address sequences (one for each node) for each of the 12 unique combinations of offset and matrix size (3,720 sequences)
- 3. Each sequence has a length of 4,096
- 4. Calculate set of 9 unpredictability metrics and average over 31 address sequences per state matrix and unique combination
- For update period, concatenated multiple matrix sequences to simulate state matrix updates

Preliminary findings Period

- Offset method has most effect on unpredictability metrics
- Number of state matrix columns and update period do not appear to significantly affect unpredictability

22

Experimentation

MIL-STD-1553 Research Plan

Phase 1: Calculate Fibonacci sequence w/ and w/o MTD

- Run experiment to obtain the 24th Fibonacci number
- Run experiment with MTD and update the address after every X frames (2 messages per frame)
- Due to low amount of messages, compute multiple times-we call this a generation

Phase 2: Exfiltration

24

- Exfiltration data from target node on MIL-STD-1553 network
- Goal: Quantify reduction in adversarial knowledge

25 ENET2-1553

²⁷ MTD Commands

Resilience Expt.: Exfiltration Attack Scenario

Set Up

- Attacker has corrupted an node to be an exfil listening node (red)
- Messages to/from target participant node (green) = messages of value to the attacker
- Exfil listening node monitors & exfils all messages to/from target
- With no MTD, exfil listening node will see and exfil 100% of messages to/from target

Question: does the implementation of MTD reduce the fraction of "messages of value" that are exfiltrated?

²⁹ Exfil Expt.: Results

Frequency Decreases

In this scenario

- MTD reduces % of value messages exfiltrated by ~97%
- Experimental results match theoretical estimates

When the adversary knows the starting address for the target

- Low frequencies give poorer results in the expts
- This observation is due to relatively short length of experiments (50 generations)
- When the length is increased, the expected # of messages exfiltrated decrease closer to 3%

Machine Learning

31 MTD Update Message

```
MESSAGE #13 ------
Time: [2019](218)14:<u>19:5</u>0.370.162.640 IM Gap: 7407.6us
BUS A - CMD:0882 (1-R-4-2) BCRT
0002 0003
Rsp Time 6.5us STS:0800
Message Time = 84.5us
MESSAGE #14 ------
Time: [2019](218)14:19:50.371.247.640 IM Gap: 1002.6us
BUS A - CMD:0CA1 (1-T-5-1) RTBC
Rsp Time 6.5us STS:0800
0005
Message Time = 64.5us
MESSAGE #15 -----
Time: [2019](218)14:<u>19:50</u>.385.049.880 IM Gap: 13739.9us
BUS A - CMD:F841 (31-R-2-1) BRDCST BCRT
0017
Message Time = 40us
MESSAGE #16 -----
Time: [2019](218)14:19:50.397.934.480 IM Gap: 12846.7us
BUS A - CMD:D882 (27-R-4-2) BCRT
0003 0005
Rsp Time 6.5us STS:D800
Message Time = 84.5us
MESSAGE #17 ------
Time: [2019](218)14:19:50.399.019.440 IM Gap: 1002.6us
BUS A - CMD:DCA1 (27-T-5-1) RTBC
Rsp Time 6.5us STS:D800
0000
Message Time = 64.5us
```

32 ML Experimentation

- Given a log of all messages on the bus
 - Can you figure out the state matrix?
 - Can you identify MTD messages?
 - Can you determine the next address?
 - <u>• Are any other side channels present?</u>
- Models Used
 - LSTM model for predicting the next address
 - Varied the number of previous addresses the model remembers
 - Training size varied
 - ° Test size always 20% of total data

Future Work

35 Future Work

Seek to become a MTD NIST standard (do any exist?)

Employ SOTA ML techniques to defeat algorithm

Apply to existing MTD framework (ADDSec, SNL MTD technology)

- Apply to TCP port encryption
- Apply IPv4 address randomization
- One static key for all packets \rightarrow 3 separate keys per packet

Apply to host-based randomization techniques (e.g., ASLR, KASLR)

Transparent (dynamic) file-system

Synchronizing keys

Apply to computer architecture techniques (e.g., MTE, PAC, SVM, SME)

Rolling codes for embedded devices (e.g., key fobs)

³⁶ Thank you!

Backup

Fulfilling Our National Security Mission

Nuclear Deterrence

National Security Programs

Energy & Homeland Security

Advanced Science & Technology Sheqiriqialikidi soudivisi qistinidi fisiong the Sheqiriqia di si and si and si and si angli di si ang **Index** – 16-bit index

Static – use static address as offset

Current – use current address as offset

Offset Selection		Index Interpretation			
Mechanism		Unsigned integer	Linear combination		
Address Used	Initial	Static	Linear-static		
	address				
	Current	Current	Linear-current		
	address				

16-bit index: 10-bit (sub-)index, 3-bit multiplier, 3-bit adder

Linear static (Linear-S) – c is the static address

Linear current (Linear-C) – c is the current address

 $4a+b+c \mod n = d$, where a, b, c, d, and n are unsigned integers

Number of Arrays	Approximate Size (KB = 1024)
1	0.03125
4	0.125
16	0.5
64	2
256	8
1024	32
4096	128
16384	512
65536	2048

State Matrix Column Generation Performance

41

Average Time (us) vs Rounds

ħ

42 State Matrix Generation Performance

Elapsed Time (ms) vs Rounds

MTD Algorithm Summary

All addresses are not created equal (non-uniform distribution)

- All addresses are used given enough time
- Don't need large matrix to have good entropy
- Index into state (or states) (don't generate state array on-the-fly)
- Try different primitive (AES, LFSR, RDRAND, etc.)

Non-address attributes or different size addresses may not have same profile

ħ

Cell Offset Method	# of columns	Total	Average	Minimum	Maximum	Std. Dev
Static	512	7686	247.96	87	606	136.82
Current	512	4083	129.13	65	278	38.14
L-Static	512	5842	188.45	85	384	70.32
L-Current	512	3988	128.64	71	239	40.36
Static	8192	5934	191.42	86	369	77.55
Current	8192	3855	124.35	71	204	36.18
L-Static	8192	4272	137.81	87	270	37.20
L-Current	8192	4259	137.39	67	244	45.07
Static	65536	5501	177.45	75	351	74.52
Current	65536	3827	123.45	71	196	33.34
L-Static	65536	3756	121.16	61	246	36.77
L-Current	65536	3587	115.71	77	198	28.72

Exfil Expt. Results: Learning Adversary

1000 Fibonacci Generations, 25 trials

Assume adversary learns new address after X frames

Example:

- Period = 25, learned = 8 frames, exfil = 70%
- Period = 25, learned = 16 frames, exfil = 40%

• Period = 25, learned = 32,
$$exfil = 0\%$$

Takeaways:

- Against a learning adversary, MTD frequency needs to be faster than adversary learning rate to significantly mitigate exfil attacks
- These data can start informing design requirements